Publications
2024
[60]
L. Han et al., Electrical 180° switching of Néel vector in spin-splitting antiferromagnet, Sci. Adv. 10, eadn0479 (2024).
2023
[59]
H. Lam, R. Peng, Z. Wang, C. Wan, and J. Liu, Topological states of Sr 3 PbO : From topological crystalline insulator phase in the bulk to quantum spin Hall insulator phase in the thin-film limit, Phys. Rev. B 108, 155139 (2023).
[58]
K. Chang, M. Hu, H. Lin, J. Liu, Q.-K. Xue, X. Chen, and S.-H. Ji, Oscillation of Electronic-Band-Gap Size Induced by Crystalline Symmetry Change in Ultrathin PbTe Films, Phys. Rev. Lett. 131, 016202 (2023).
[57]
L. An et al., Unconventional Ferroelectricity in Half-Filling States of Antiparallel Stacking of Twisted WSe2, arXiv:2301.02025.
2022
[56]
Y. You et al., Anomalous Nernst Effect in an Antiperovskite Antiferromagnet, Phys. Rev. Applied 18, 024007 (2022).
[55]
J. Xue, Z. Wang, A. Comstock, Z. Wang, H. H. Y. Sung, I. D. Williams, D. Sun, J. Liu, and H. Lu, Chemical Control of Magnetic Ordering in Hybrid Fe–Cl Layered Double Perovskites, Chem. Mater. 34, 2813 (2022).
[54]
J. Wu, X. Lin, Y. Guo, J. Liu, L. Fang, S. Jiao, and Q. Dai, Analog Optical Computing for Artificial Intelligence, Engineering 10, 133 (2022).
[53]
S. Fang et al., Ferromagnetic helical nodal line and Kane-Mele spin-orbit coupling in kagome metal Fe 3 Sn 2, Phys. Rev. B 105, 035107 (2022).
[52]
X. Cai et al., Bridging the gap between atomically thin semiconductors and metal leads, Nat Commun 13, 1777 (2022).
2021
[51]
Y. Zuo, Y. Zhao, Y.-C. Chen, S. Du, and J. Liu, Scalability of All-Optical Neural Networks Based on Spatial Light Modulators, Phys. Rev. Applied 15, 054034 (2021).
[50]
E. Zhao, J. Lee, C. He, Z. Ren, E. Hajiyev, J. Liu, and G.-B. Jo, Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks, Nat Commun 12, 2011 (2021).
[49]
Z.-Q. Zhang, C.-Z. Chen, Y. Wu, H. Jiang, J. Liu, Q. Sun, and X. C. Xie, Chiral interface states and related quantized transport in disordered Chern insulators, Phys. Rev. B 103, 075434 (2021).
[48]
R.-C. Xiao, Z. Wang, Z.-Q. Zhang, J. Liu, and H. Jiang, Magnus Hall Effect in Two-Dimensional Materials, Chinese Phys. Lett. 38, 057301 (2021).
[47]
H.-Y. Ma, M. Hu, N. Li, J. Liu, W. Yao, J.-F. Jia, and J. Liu, Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current, Nat Commun 12, 2846 (2021).
[46]
Y.-T. Liu, W.-Y. He, J.-W. Liu, Q.-M. Shao, Department of Electronic and Computing Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China, and Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China, Berry curvature-induced emerging magnetic response in two-dimensional materials, Acta Phys. Sin. 70, 127303 (2021).
[45]
J. Liu, A short review on first-principles study of gapped topological materials, Computational Materials Science 195, 110467 (2021).
[44]
M. Hu, G. Ma, C. Y. Wan, and J. Liu, Realistic tight-binding model for monolayer transition metal dichalcogenides of 1 T ′ structure, Phys. Rev. B 104, 035156 (2021).
[43]
W. Chen et al., Epitaxial Growth of Single‐Phase 1T’‐WSe2 Monolayer with Assistance of Enhanced Interface Interaction, Advanced Materials 33, 2004930 (2021).
2020
[42]
C. Zhao et al., Strain Tunable Semimetal–Topological-Insulator Transition in Monolayer 1 T ′ − WTe 2, Phys. Rev. Lett. 125, 046801 (2020).
[41]
J. Liu, Two monolayers is greater than a bilayer, Nat. Mater. 19, 824 (2020).
2019
[40]
Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, All-optical neural network with nonlinear activation functions, Optica 6, 1132 (2019).
[39]
W. Zhou, J. Chen, Z. Yang, J. Liu, and F. Ouyang, Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe, Phys. Rev. B 99, 075160 (2019).
[38]
L. Ye, M. K. Chan, R. D. McDonald, D. Graf, M. Kang, J. Liu, T. Suzuki, R. Comin, L. Fu, and J. G. Checkelsky, de Haas-van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2, Nat Commun 10, 4870 (2019).
[37]
H. Shen, J. Liu, K. Chang, and L. Fu, In-Plane Ferroelectric Tunnel Junction, Phys. Rev. Applied 11, 024048 (2019).
[36]
J. Liu, C. Fang, and L. Fu, TunableWeyl fermions and Fermi arcs in magnetized topological crystalline insulators*, Chinese Phys. B 28, 047301 (2019).
[35]
J. Liu, J. Liu, and X. Dai, Pseudo Landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase, Phys. Rev. B 99, 155415 (2019).
[34]
H. Inoue, M. Han, M. Hu, T. Suzuki, J. Liu, and J. G. Checkelsky, Band engineering of a magnetic thin film rare-earth monopnictide: A platform for high Chern number, Phys. Rev. Materials 3, 101202 (2019).
[33]
X. Han, J. Lin, J. Liu, N. Wang, and D. Pan, Effects of Hexagonal Boron Nitride Encapsulation on the Electronic Structure of Few-Layer MoS2, J. Phys. Chem. C 123, 14797 (2019).
[32]
J. Cui et al., Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2, Nat Commun 10, 2044 (2019).
2018
[31]
L. Ye et al., Massive Dirac fermions in a ferromagnetic kagome metal, Nature 555, 638 (2018).
[30]
H. Shen, J. Liu, and L. Fu, Self-learning Monte Carlo with deep neural networks, Phys. Rev. B 97, 205140 (2018).
[29]
C. Chen, X. Y. Xu, J. Liu, G. Batrouni, R. Scalettar, and Z. Y. Meng, Symmetry-enforced self-learning Monte Carlo method applied to the Holstein model, Phys. Rev. B 98, 041102 (2018).
2017
[28]
X. Y. Xu, Y. Qi, J. Liu, L. Fu, and Z. Y. Meng, Self-learning quantum Monte Carlo method in interacting fermion systems, Phys. Rev. B 96, 041119 (2017).
[27]
Y. Wang, G. Luo, J. Liu, R. Sankar, N.-L. Wang, F. Chou, L. Fu, and Z. Li, Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy, Nat Commun 8, 366 (2017).
[26]
Y. Nagai, H. Shen, Y. Qi, J. Liu, and L. Fu, Self-learning Monte Carlo method: Continuous-time algorithm, Phys. Rev. B 96, 161102 (2017).
[25]
J. Liu, H. Wang, C. Fang, L. Fu, and X. Qian, van der Waals Stacking-Induced Topological Phase Transition in Layered Ternary Transition Metal Chalcogenides, Nano Lett. 17, 467 (2017).
[24]
J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning Monte Carlo method and cumulative update in fermion systems, Phys. Rev. B 95, 241104 (2017).
[23]
J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning Monte Carlo method, Phys. Rev. B 95, 041101 (2017).
2016
[22]
M. Wu et al., Conetronics in 2D metal-organic frameworks: double/half Dirac cones and quantum anomalous Hall effect, 2D Mater. 4, 015015 (2016).
[21]
C. Fang, L. Lu, J. Liu, and L. Fu, Topological semimetals with helicoid surface states, Nature Phys 12, 936 (2016).
[20]
K. Chang et al., Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353, 274 (2016).
2015
[19]
L. Zhao, J. Wang, J. Liu, Y. Xu, B.-L. Gu, Q.-K. Xue, and W. Duan, Electronic analog of chiral metamaterial: Helicity-resolved filtering and focusing of Dirac fermions in thin films of topological materials, Phys. Rev. B 92, 041408 (2015).
[18]
I. Zeljkovic et al., Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators, Nature Mater 14, 318 (2015).
[17]
W.-J. Shi, J. Liu, Y. Xu, S.-J. Xiong, J. Wu, and W. Duan, Converting normal insulators into topological insulators via tuning orbital levels, Phys. Rev. B 92, 205118 (2015).
[16]
J. Liu, X. Qian, and L. Fu, Crystal Field Effect Induced Topological Crystalline Insulators In Monolayer IV–VI Semiconductors, Nano Lett. 15, 2657 (2015).
[15]
J. Liu and L. Fu, Electrically tunable quantum spin Hall state in topological crystalline insulator thin films, Phys. Rev. B 91, 081407 (2015).
2014
[14]
G. Yang, J. Liu, L. Fu, W. Duan, and C. Liu, Weak topological insulators in PbTe/SnTe superlattices, Phys. Rev. B 89, 085312 (2014).
[13]
C. Yan et al., Experimental Observation of Dirac-like Surface States and Topological Phase Transition in Pb 1 − x Sn x Te ( 111 ) Films, Phys. Rev. Lett. 112, 186801 (2014).
[12]
N. Wang, D. West, J. Liu, J. Li, Q. Yan, B.-L. Gu, S. B. Zhang, and W. Duan, Microscopic origin of the p -type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying, Phys. Rev. B 89, 045142 (2014).
[11]
J. Wang, J. Liu, Y. Xu, J. Wu, B.-L. Gu, and W. Duan, Structural stability and topological surface states of the SnTe (111) surface, Phys. Rev. B 89, 125308 (2014).
[10]
C. Si, J. Liu, Y. Xu, J. Wu, B.-L. Gu, and W. Duan, Functionalized germanene as a prototype of large-gap two-dimensional topological insulators, Phys. Rev. B 89, 115429 (2014).
[9]
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346, 1344 (2014).
[8]
J. Liu, Y. Xu, J. Wu, B.-L. Gu, S. B. Zhang, and W. Duan, Manipulating topological phase transition by strain, Acta Crystallogr C Struct Chem 70, 118 (2014).
[7]
J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator, Nature Mater 13, 178 (2014).
[6]
T. H. Hsieh, J. Liu, and L. Fu, Topological crystalline insulators and Dirac octets in antiperovskites, Phys. Rev. B 90, 081112 (2014).
[5]
H. Guo et al., Topological crystalline insulator PbxSn1-xTe thin films on SrTiO3 (001) with tunable Fermi levels, APL Materials 2, 056106 (2014).
Before 2014
[4]
J. Liu, W. Duan, and L. Fu, Two types of surface states in topological crystalline insulators, Phys. Rev. B 88, 241303 (2013).
[3]
L. Zhao, J. Liu, P. Tang, and W. Duan, Design of strain-engineered quantum tunneling devices for topological surface states, Applied Physics Letters 100, 131602 (2012).
[2]
T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Topological crystalline insulators in the SnTe material class, Nat Commun 3, 982 (2012).
[1]
Y.-L. Wang et al., Structural defects and electronic properties of the Cu-doped topological insulator Bi 2 Se 3, Phys. Rev. B 84, 075335 (2011).
